跳转至

5.2 队列

先入先出规则的线性数据结构

5.2.1   队列常用操作

push()pop()peek()

5.2.2   队列实现

1.   基于链表的实现

/* 基于链表实现的队列 */
typedef struct {
    ListNode *front, *rear;
    int queSize;
} LinkedListQueue;

/* 构造函数 */
LinkedListQueue *newLinkedListQueue() {
    LinkedListQueue *queue = (LinkedListQueue *)malloc(sizeof(LinkedListQueue));
    queue->front = NULL;
    queue->rear = NULL;
    queue->queSize = 0;
    return queue;
}

/* 析构函数 */
void delLinkedListQueue(LinkedListQueue *queue) {
    // 释放所有节点
    while (queue->front != NULL) {
        ListNode *tmp = queue->front;
        queue->front = queue->front->next;
        free(tmp);
    }
    // 释放 queue 结构体
    free(queue);
}

/* 获取队列的长度 */
int size(LinkedListQueue *queue) {
    return queue->queSize;
}

/* 判断队列是否为空 */
bool empty(LinkedListQueue *queue) {
    return (size(queue) == 0);
}

/* 入队 */
void push(LinkedListQueue *queue, int num) {
    // 尾节点处添加 node
    ListNode *node = newListNode(num);
    // 如果队列为空,则令头、尾节点都指向该节点
    if (queue->front == NULL) {
        queue->front = node;
        queue->rear = node;
    }
    // 如果队列不为空,则将该节点添加到尾节点后
    else {
        queue->rear->next = node;
        queue->rear = node;
    }
    queue->queSize++;
}

/* 访问队首元素 */
int peek(LinkedListQueue *queue) {
    assert(size(queue) && queue->front);
    return queue->front->val;
}

/* 出队 */
int pop(LinkedListQueue *queue) {
    int num = peek(queue);
    ListNode *tmp = queue->front;
    queue->front = queue->front->next;
    free(tmp);
    queue->queSize--;
    return num;
}

/* 打印队列 */
void printLinkedListQueue(LinkedListQueue *queue) {
    int *arr = malloc(sizeof(int) * queue->queSize);
    // 拷贝链表中的数据到数组
    int i;
    ListNode *node;
    for (i = 0, node = queue->front; i < queue->queSize; i++) {
        arr[i] = node->val;
        node = node->next;
    }
    printArray(arr, queue->queSize);
    free(arr);
}

2.   基于数组的实现

使用一个变量 front 指向队首元素的索引,并维护一个变量 size 用于记录队列长度。定义 rear = front + size ,这个公式计算出的 rear 指向队尾元素之后的下一个位置。

基于此设计,数组中包含元素的有效区间为 [front, rear - 1],各种操作的实现方法如图 5-6 所示。

  • 入队操作:将输入元素赋值给 rear 索引处,并将 size 增加 1 。
  • 出队操作:只需将 front 增加 1 ,并将 size 减少 1 。

可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 \(𝑂(1)\)

环形数组

对于环形数组,需要让 front 或 rear 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示:

/* 基于环形数组实现的队列 */
typedef struct {
    int *nums;       // 用于存储队列元素的数组
    int front;       // 队首指针,指向队首元素
    int queSize;     // 尾指针,指向队尾 + 1
    int queCapacity; // 队列容量
} ArrayQueue;

/* 构造函数 */
ArrayQueue *newArrayQueue(int capacity) {
    ArrayQueue *queue = (ArrayQueue *)malloc(sizeof(ArrayQueue));
    // 初始化数组
    queue->queCapacity = capacity;
    queue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);
    queue->front = queue->queSize = 0;
    return queue;
}

/* 析构函数 */
void delArrayQueue(ArrayQueue *queue) {
    free(queue->nums);
    free(queue);
}

/* 获取队列的容量 */
int capacity(ArrayQueue *queue) {
    return queue->queCapacity;
}

/* 获取队列的长度 */
int size(ArrayQueue *queue) {
    return queue->queSize;
}

/* 判断队列是否为空 */
bool empty(ArrayQueue *queue) {
    return queue->queSize == 0;
}

/* 访问队首元素 */
int peek(ArrayQueue *queue) {
    assert(size(queue) != 0);
    return queue->nums[queue->front];
}

/* 入队 */
void push(ArrayQueue *queue, int num) {
    if (size(queue) == capacity(queue)) {
        printf("队列已满\r\n");
        return;
    }
    // 计算队尾指针,指向队尾索引 + 1
    // 通过取余操作实现 rear 越过数组尾部后回到头部
    int rear = (queue->front + queue->queSize) % queue->queCapacity;
    // 将 num 添加至队尾
    queue->nums[rear] = num;
    queue->queSize++;
}

/* 出队 */
int pop(ArrayQueue *queue) {
    int num = peek(queue);
    // 队首指针向后移动一位,若越过尾部,则返回到数组头部
    queue->front = (queue->front + 1) % queue->queCapacity;
    queue->queSize--;
    return num;
}