跳转至

10.04 Areas and Lengths in Polar Coordinates

先前我们已经知道扇形面积为:

\[ A=\frac12r^2\theta \tag{1} \]

又因为 \(r=f(\theta)\),由图可以看出面积 \(R\) 是由 \(a,b\) 两条射线围成的区域,因此区间为 \([a,b]\)

如同先前求黎曼和一样,将区间分割成子区间,宽度为 \(\Delta \theta\),则小区间的面积为:

\[ \Delta A_{i}\approx\frac{1}{2}[f(\theta_{i}^{*})]^{2} \Delta\theta \]

总面积近似为:

\[ A \approx \sum_{i=1}^n \frac{1}{2}[f(\theta_i^*)]^2 \Delta\theta \tag{2} \]

写成积分的形式:

\[ \lim\limits_{n\to\infty}\sum\limits_{i=1}^n\frac{1}{2}[f(\theta_i^*)]^2\Delta\theta=\int\limits_a^b\frac{1}{2}[f(\theta)]^2d\theta \]

所有极坐标下区域面积为:

\[ A=\int_a^b\frac{1}{2}[f(\theta)]^2d\theta \tag{3} \]

也写作:

\[ A=\int_a^b\frac{1}{2}r^2 d\theta \tag{4} \]

Arc Length

极坐标曲线为 \(r=f(\theta),a\le\theta \le b\),如何计算它的弧长?

\(\theta\) 视为参数,写出曲线的参数方程:

\[ x=r\cos\theta=f(\theta)\cos\theta\quad y=r\sin\theta=f(\theta)\sin\theta \]

使用乘积法则并对 \(\theta\) 求导,则有:

\[ \frac{dx}{d\theta}=\frac{dr}{d\theta}\cos\theta-r\sin\theta\quad\frac{dy}{d\theta}=\frac{dr}{d\theta}\sin\theta + r\cos\theta \]

又因为 \(\cos^2\theta+\sin^2\theta=1\),有:

\[ \begin{aligned} \left(\frac{dx}{d\theta}\right)^{2}+\left(\frac{dy}{d\theta}\right)^{2}& =\left(\frac{dr}{d\theta}\right)^{2}\cos^{2}\theta - 2r \frac{dr}{d\theta} \cos\theta \sin\theta + r^{2}\sin^{2}\theta \\ &+ \left(\frac{dr}{d\theta}\right)^2\sin^2\theta + 2r \frac{dr}{d\theta} \sin\theta \cos\theta + r^2\cos^2\theta \\ &=\left(\frac{dr}{d\theta}\right)^2 + r^2 \end{aligned} \]

假设 \(f'\) 连续,根据 10.2.5(参数方程的弦长公式),则有:

\[ L=\int_a^b\sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2} d\theta \]

因此,极坐标方程 \(r=f(\theta),a\le\theta \le b\) 曲线的弦长为:

\[ L=\int_a^b\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2} d\theta \tag{5} \]