10.04 Areas and Lengths in Polar Coordinates
先前我们已经知道扇形面积为:
\[
A=\frac12r^2\theta \tag{1}
\]
又因为 \(r=f(\theta)\),由图可以看出面积 \(R\) 是由 \(a,b\) 两条射线围成的区域,因此区间为 \([a,b]\)。
如同先前求黎曼和一样,将区间分割成子区间,宽度为 \(\Delta \theta\),则小区间的面积为:
\[
\Delta A_{i}\approx\frac{1}{2}[f(\theta_{i}^{*})]^{2} \Delta\theta
\]
总面积近似为:
\[
A \approx \sum_{i=1}^n \frac{1}{2}[f(\theta_i^*)]^2 \Delta\theta \tag{2}
\]
写成积分的形式:
\[
\lim\limits_{n\to\infty}\sum\limits_{i=1}^n\frac{1}{2}[f(\theta_i^*)]^2\Delta\theta=\int\limits_a^b\frac{1}{2}[f(\theta)]^2d\theta
\]
所有极坐标下区域面积为:
\[
A=\int_a^b\frac{1}{2}[f(\theta)]^2d\theta \tag{3}
\]
也写作:
\[
A=\int_a^b\frac{1}{2}r^2 d\theta \tag{4}
\]
Arc Length
极坐标曲线为 \(r=f(\theta),a\le\theta \le b\),如何计算它的弧长?
将 \(\theta\) 视为参数,写出曲线的参数方程:
\[
x=r\cos\theta=f(\theta)\cos\theta\quad y=r\sin\theta=f(\theta)\sin\theta
\]
使用乘积法则并对 \(\theta\) 求导,则有:
\[
\frac{dx}{d\theta}=\frac{dr}{d\theta}\cos\theta-r\sin\theta\quad\frac{dy}{d\theta}=\frac{dr}{d\theta}\sin\theta + r\cos\theta
\]
又因为 \(\cos^2\theta+\sin^2\theta=1\),有:
\[
\begin{aligned}
\left(\frac{dx}{d\theta}\right)^{2}+\left(\frac{dy}{d\theta}\right)^{2}& =\left(\frac{dr}{d\theta}\right)^{2}\cos^{2}\theta - 2r \frac{dr}{d\theta} \cos\theta \sin\theta + r^{2}\sin^{2}\theta \\
&+ \left(\frac{dr}{d\theta}\right)^2\sin^2\theta + 2r \frac{dr}{d\theta} \sin\theta \cos\theta + r^2\cos^2\theta \\
&=\left(\frac{dr}{d\theta}\right)^2 + r^2
\end{aligned}
\]
假设 \(f'\) 连续,根据 10.2.5(参数方程的弦长公式),则有:
\[
L=\int_a^b\sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2} d\theta
\]
因此,极坐标方程 \(r=f(\theta),a\le\theta \le b\) 曲线的弦长为:
\[
L=\int_a^b\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2} d\theta \tag{5}
\]